Electrons behave contrary to what physicists expected.  The monitoring results are surprising

This is a specific configuration where five layers of graphene are sandwiched between sheets of boron nitride. If current reports are confirmed, the effect obtained in such conditions may be useful, for example, in the design of future quantum computers.

Read also: Atomic clocks are at a level that was previously unattainable. This is due to quantum deception

The partial quantum anomalous Hall effect is a real treat for physicists because it determines the presence of partial charges such as -⅔ or -⅗. This phenomenon was discovered in 1982, which led to a very big change: physicists stopped looking at electrons as single particles. Instead, they began to look for their own collective activity.

In 2012, scientists from Tsinghua University observed the anomalous behavior of thin magnetic layers, and recently representatives from the University of Washington repeated this feat using molybdenum ditelluride. It is worth noting the concept known as moiré lines, which refers to the distinctive patterns created by superimposing two grids placed in a plane at a slightly apart angle.

Electrons showed surprising behavior when scientists passed an electric current through layers of graphene alternating with layers of boron nitride.

By passing an electric current through two thin layers of the material, the electrons work together, as do particles with fractional charges. Resistance measurements showed that instead of the usual charge of -1, electrons behaved similarly to particles with a charge of -⅔ or -⅗.

It became even more interesting when layers of graphene appeared, alternating with layers of boron nitride. This was done by a team from the Massachusetts Institute of Technology, which conducted observations on five layers of graphene mixed with sheets of boron nitride. Recently, the authors of this experiment spoke out again, emphasizing that discovering the exact mechanism behind the anomalous quantum Hall effect in layered graphene will require a lot of effort.

Read also: You will convert the bottle into a quantitative item. Innovative technology offers a number of possibilities

Pablo Jarillo-Herrero adds that he doesn't know anyone who wouldn't be excited about the potential possibilities of the research. There is talk of designing a specific type of quantum computer that could harness the benefits of this phenomenon. But would it actually be possible to do this? We just have to be patient.

Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like

More than half of students want more remote classes

As it turns out, 50 per cent. Respondents answered that some lectures…

Earth escaped from its star. Astronomers noticed something unusual

In most cases, the planets remain gravitationally bound to their stars, as…

Inaccurate forensic mathematics, or the unemployment controversy. See comment by Tomasz Sakiewicz

Of course, we are talking about the ruling on the issue of…

a. Pyrć: The wave with Omikron will be from vaccination and reinfection – guest of ZET Radio 10.01.2022

Mandatory vaccinations for teachers and regular services? – Yes. They pose high…